19 research outputs found

    Polarimetric measurements of sea surface brightness temperatures using an aircraft K-band radiometer

    Get PDF
    This paper presents the first experimental evidence that the polarimetric brightness temperatures of sea surfaces are sensitive to ocean wind direction in the incidence angle range of 30 to 50 degrees. Our experimental data were collected by a K-band (19.35 GHz) polarimetric wind radiometer (WINDRAD) mounted on the NASA DC-8 aircraft. A set of aircraft radiometer flights was successfully completed in November 1993. We performed circle flights over National Data Buoy Center (NDBC) moored buoys deployed off the northern California coast, which provided ocean wind measurements. The first WINDRAD flight was made on November 4, 1993. There was clear weather with a wind speed of 12 m/s at 330 degrees around the Pt. Arena buoy. We circled the buoy at three incidence angles, and all data when plotted as functions of azimuth angles show clear modulations of several Kelvin. At 40 degrees incidence angle, there is a 5 Kelvin peak-to-peak signal in the second Stokes parameter Q and the third Stokes parameter U. The Q data maximum is in the upwind direction and U has a 45 degrees phase shift in azimuth as predicted by theory. There is also an up/downwind asymmetry of 2 Kelvin in the Q data, and 1 Kelvin in the U data. At 50 degrees incidence angle, the collected data show very similar wind direction signatures to the SSM/I model function. Additional flights were made on other days under cloudy conditions. Data taken at a wind speed of 8 m/s show that at 40 degrees incidence Q and U have a smaller azimuthal modulation of 3 Kelvin, probably due to the lower wind speed. Additionally, the simultaneously recorded video images of sea surfaces suggested that Q and U data were less sensitive to unpolarized geophysical variations, such as clouds and whitecaps, while the T(v) and T(h) increased by a few Kelvin when the radiometer beam crossed over clouds, or there was a sudden increase of whitecaps in the radiometer footprint. The results of our aircraft flights indicate that passive polarimetric radiometry has a strong potential for global ocean wind speed and direction measurements from space

    Retrieval of atmospheric attenuation using combined ground-based and airborne 95-GHz cloud radar measurements

    Get PDF
    Includes bibliographical references (page 1353).Cloud measurements at millimeter-wave frequencies are affected by attenuation due to atmospheric gases, clouds, and precipitation. Estimation of the true equivalent radar reflectivity, Ze, is complicated because extinction mechanisms are not well characterized at these short wavelengths. This paper discusses cloud radar calibration and intercomparison of airborne and ground-based radar measurements and presents a unique algorithm for attenuation retrieval. This algorithm is based on dual 95-GHz radar measurements of the same cloud and precipitation volumes collected from opposing viewing angles. True radar reflectivity is retrieved by combining upward-looking and downward-looking radar profiles. This method reduces the uncertainty in radar reflectivity and attenuation estimates, since it does not require a priori knowledge of hydrometeors' microphysical properties. Results from this technique are compared with results retrieved from the Hitschfeld and Bordan algorithm, which uses single-radar measurements with path-integrated attenuation as a constraint. Further analysis is planned to employ this dual-radar algorithm in order to refine single-radar attenuation retrieval techniques, which will be used by operational sensors such as the CloudSat radar

    Observations of Radar Backscatter at Ku and C Bands in the Presence of Large Waves during the Surface Wave Dynamics Experiment

    Get PDF
    Ocean radar backscatter in the presence of large waves is investigated using data acquired with the Jet Propulsion Laboratory NUSCAT radar at Ku band for horizontal and vertical polarizations and the University of Massachusetts CSCAT radar at C band for vertical polarization during the Surface Wave Dynamics Experiment. Off-nadir backscatter data of ocean surfaces were obtained in the presence of large waves with significant wave height up to 5.6 m. In moderate-wind cases, effects of large waves are not detectable within the measurement uncertainty and no noticeable correlation between backscatter coefficients and wave height is found. Under high-wave light-wind conditions, backscatter is enhanced significantly at large incidence angles with a weaker effect at small incidence angles. Backscatter coefficients in the wind speed range under consideration are compared with SASS-2 (Ku band), CMOD3-H1 (C band), and Plant's model results which confirm the experimental observations. Variations of the friction velocity, which can give rise to the observed backscatter behaviors in the presence of large waves, are presented

    Mars: 2010 - 2020

    No full text
    This slide presentation reviews the Mars Exploration program for the current decade and beyond. The potential items for procurements for the Mars Science Laboratory (MSL) are discussed, as well as future technology investments to enable to continued development of exploration of Mars by rovers and orbiters that are planned and envisioned for future missions

    Cloudsat Radar Instrument Design and Development Status

    No full text
    The Cloud Profiling Radar is the key science instrument for the CloudSat Mission to acquire a global data set of vertical atmospheric cloud structure and its variability. CPR is a 94 GHz nadir-looking radar that measures the power backscattered by clouds as a function of distance from the radar. This sensor is expected to provide cloud measurements at a 500-m vertical resolution and a 1.5-km horizontal resolution. CPR will operate in a short pulse mode and will yield measurements at a minimum detectable sensitivity of -28 dBZ
    corecore